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Properties of Vector Preisach Models 

G. R. KAHLER, E DELLA TORRE, Fellow, ZEEE, and U. D. PATEL, Member, ZEEE 

Abstracf- This paper discusses rotational h h p y  and 
rotational accommodation of magnetic partide tape. These effects 
have a performance impact during the reading and Writing of the 
recording process. We introduce the redud vector model BS the 
basis for the computations. Rotational magnetization models must 
accurately compute the anisotropic characterktics of ellipsoidally 
magnetizable media. An ellipticity factor is derived for these 
media that computes the two-dimensional magnetization 
trajectory for all  applied fields. An orientation correction must be 
applied to the computed rotational magnetization. For isotropic 
materials, an orientation correction has been developed and 
presented. For anisotropic materials, an orientation correction is 
introduced. 

Index Terms-Preisach modeling, reduced model, rotational 
anisotropy, rotational accommodation, rotational orientation. 

I. INTRODUCTION 
HIS paper presents three extensions of the vector Preisach 
model the reduced vector Preisach model, RVPM, which 
eliminates the need for a rotational correction in the 

SVPM, and extension of the orientation correction to 
anisotropic media, and a technique for handling vector 
accommodation. 

The accurate characterization of magnetic processes 
requires a vector model of magnetic hysteresis. The classical 
Preisach model cannot adequately represent vector magnetic 
processes since it is inherently a scalar model. Several authors 
have modified the scalar Preisach model to include the vector 
features of a magnetic medium [1-4]. The Simplified Vector 
Preisach Model (SVPM) [I] was developed for computing the 
vector magnetization in response to a vector-applied field. 

The SVPM is a coupled-hysteron model that exhibits both 
the saturation property and the loss property [l]. The vector 
magnetization is computed from the integration of the product 
of a state vector and a Preisach function and then performing 
the rotational correction. The state vector is computed using 
the selection rules determined by the applied field. The 
rotational correction term provides the cross-axis coupling 
effect of applied fields. This cross-axis coupling term makes it 
impossible to obtain an analytical closed form solution for the 
magnetic susceptibility. 

The Reduced Vector Preisach Model (RVPM) does not 
require the rotational correction. The developed vector model 
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uses modified selection rules for state vector calculation. 
Using this new model as a basis to characterize the medium, 

measurements and computations of the angle of magnetization 
for a magnetic particle (IW) tape rotated in an applied field 
have been made. This anisotropic material is ellipsoidally 
magnetizeable, that is, when subject to a constant magnitude 
rotating field has a magnetization trajectory that is nearly 
elliptical [ll]. This model has an orientation error which has 
been corrected for isotropic media. We introduce a correction 
for anisotropic media. 

An ellipticity factor has been computed for ellipsoidally 
anisotropic media that accurately computes the two- 
dimensional magnetization for large applied fields (50% 
greater than the hard axis coercivity of the material). A 
procedure has been derived and is presented for computing the 
magnetization trajectories for small applied fields. The 
measured magnetization trajectories (polar plots of the 
magnetization magnitude and angle) of elliptically 
magnetizable material changes shape from ellipses for small- 
applied fields to circles for large applied fields. The measured 
ellipticity factor, I., for rotational applied fields approaches 
one asymptotically as the applied field increases and the 
magnetization trajectories become circles. 

The phenomenon of accommodation has been presented and 
discussed for scalar Preisach models [9] and a scalar 
differential equation model has been introduced [lo] to 
compute accommodation. Rotational magnetization 
measurements have demonstrated vector accommodation for 
ellipsoidally magnetizable media [ 1 11. From the magnetization 
trajectories, accommodation is demonstrated for 360" of 
rotation. The radial change in a magnetization trajectory from 
the start to the end of applied field rotation is a measure of the 
accommodation. As the rotating applied field increases, the 
magnetization trajectories start with shapes of ellipses and 
exponentially approach the shape of a circle. 

The SVPM computes the normalized irreversible 
magnetization components as the product of the rotational 
correction R(Zx , I,, I, ), and the basic Preisach integrals Zj, 

mo = R ( I ~ , Z ~ , Z J ~ ,  f o r j = x , y , o r z  (1) 
The output from the basic Preisach integrals Zj are computed as 

I .  I = j l Q j p ( u j , v j ) h j d v j ,  for j=x ,y ,orz ,  (2) 

where the up and down switching fields are uj and vj, the 
normalized Preisach function is p, and the state function is Qj. 
The state function Qj is determined by selection rules. These 

V j < U j  
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selection rules are summarized in Table I for the 2-D model 
and are generalized for the 3-D model in Table III. 

The rotational correction is given by 

(3) 

It was shown [ l ]  that for any set of values of i'j, the rotation 
correction ensures the correct magnitude of the magnetization 
a n d 1 I R S f i .  

The normaked irreversible magnetization is computed as 
the vector sum of three basic Preisach models as 

The irreversible magnetization can be computed as the vector 
mI = R I .  (4) 

MI =MsS*mI,  (5) 
SUm 

where M, is the saturation magnetization and S is the material 
squareness matrix defined as 

sf ; 4. (6) 

Thus, to simulate anisotropic media, this model can allow 
different values for the S's along each of the axes and 
parameters in the basic Preisach models. 

The normalized reversible magnetization components can 

mW = c ~ ~ + f ( H ~ ) - a ~ - f ( - ~ ~ )  , forj=x,y,orz,  (7) 
where the aj* variables can be implemented with either a state- 
independent, magnetizationdependent, or statedependent 
reversible magnetization as in the case of the scalar models. 
The non-linear function f (H ) is defined as 

be computed as 

&Ij)= 1 - e-@j , 
where 6 is a model parameter that needs to be identified. 

S u m ,  

The reversible magnetization can be computed as a vector 

MR =(l-S)MsmR, (9) 
where S is the squareness matrix defined in (6). 

Then the total magnetization can be expressed as 
MT=MI+MR.  (10) 

m. REDUCED VECTOR PREISACH MODEL 

The Reduced Vector Preisach Model computes the 
normalized irreversible magnetization components using the 
basic Preisach integrals 

mG= ~ ~ Q R j P ( u j , y i ) l U # v j  *for i=x ,y ,  o r& (11) 

where the up and down switching fields are uj and vi, the 
normalized Preisach function is p ,  and the state function is 

The state vector, &j, for the RVPM differs from Qj for the 
SVPM, and is computed by new selection rules summarized in 
Table I for the 2-D case. These rules differ from the SVPM 
case only at the comers. The subscript d is used for the 

V I  -I 

QRj. 

direction in which Q d  is being computed. The subscript c is 
used to indicate the cross direction. The new selection rules 
are defined such that no rotational correction is required for 
computing the magnetization [5]. 

Similarly, the irreversible magnetization, the reversible 
magnetization component and the total magnetization are 
computed using (5), (9) and (10) respectively. 

The application of selection rules shown in Table II shows 
that at any point on the Preisach hyperplane, the sum of the 
square of the Cartesian components of the state vector obeys 

Q: +e,' +Q: = I .  (12) 
For the ellipsoidal magnetization behavior, the major 

(13) 

remanence path must satisfy 
mZ, +m,, 2 + m ,  2 = I .  

mRr 2 +mRy 2 + m ,  2 = l .  

q. + rnTy + rnTz = 1. 

For sufficiently strong fields, the normalized reversible 
magnetization satisfies 

(14) 
Therefore, the normalized total magnetization can be 

expressed as 

(15) 
The important properties of the RVPM can be summarized 

- The model is applicable to anisotropic media as well as 
isotropic media. 

- The model reduces to the scalar model when the 
applied field and the initial magnetization lie along only 
one of the principal axes, whereby, the vector model 
will have all the properties of the scalar moving model. 

In the presence of large fields, the normalized irreversible 
magnetization and the reversible magnetization each trace out 
ellipses whose major axes are at right angle to each other for 
both isotropic and anisotropic media. 

2 2 2 

as: 

Iv. REDUCED VECTOR PREISACH MODEL SIMULATIONS 

The RVPM is applied to an isotropic magnetic medium. For 
an isotropic medium, values for ai and 0 k are equal, and 

negligible compared to the average critical field H ,  . The 

material parameters used for simulations are: 0 = 0 , =165, 

H ,  = 633, S = 0.57, M, = 0.014127,ff = 33332.81,{ = 
O.OOO9. 

Simulations were carried out for the orthogonal component 
H of the applied field of 1. lh, , 1.4G and 47;;. The vector 
DOK model [7] is implemented based on the RVPM using the 
cobweb method [6] for computation speed. Figure 1 shows the 
magnetization angle versus the applied field angle. It can be 
seen that the magnetization ratchets as the applied field rotates. 
For very large applied fields, the magnetization angle becomes 
equal to the applied field angle for all values. 

Figure 2 shows the locus of the magnetization as the applied 
field is rotated. It is seen that as the field increases, the curves 
become rounder. The flattening of the loci close to 135" and 

- 

- 
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315" is a discretization error caused by the jump in the 
magnetization angle for the respective applied fields. 

For isotropic media, since the magnetization rotates faster 
than the applied field, the rotations of the magnetization need 
to be corrected using the correction rules defined in [ 8 ] .  
Applying these corrections for the applied fields as in Fig. 1, 
the corrected magnetization angle vs. applied field angle is 
plotted as shown in Fig. 3. Figure 4 shows the magnetization 
loci with corrections for an applied field rotation of 360". It is 
seen that the curves are more rounded. 
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Fig. 1. Magnetization angle vs. applied field angle for applied fields 
of 1.a: (solid line), 1.4; (dotted line), and & (dash& line). 
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Fig. 2. A plot of the corrected magnehtion angle vs. applied field 
angle for the same conditions as in Fig. 1. 

OalS -. . 

/ - .-.e. 
-_  

u0&!5 ob1 odm 6 odm o b i  0!15 

Fig. 3. Locus of magnetization for the same set of applied field 
rotations as shown in Fig. 1.  
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Fig. 4. A plot of the corrected magnetization angle vs. applied field 
angle for the same conditions as in Fig. 1. 

V. ORIENTATION 

A simplified vector model was introduced [3] that is the 
basis for the isotropic model. Two orthogonal Preisach planes, 
each with its own Preisach function, are defined. For the easy 
axis Preisach function, seven Preisach parameters (saturation 
magnetization, squareness, average critical field, zero field 
susceptibility, standard deviation of interaction field, standard 
deviation of critical field, and moving parameter) are 
identified for the isotropic material. The Preisach parameters 
used for each orthogonal Preisach plane are set equal to this 
set of identified parameters, thereby, making the model 
isotropic. The model then computes the irreversible 
magnetization incorporating a rotational correction factor. 
From the irreversible magnetization, the reversible 
magnetization is computed. The irreversible and reversible 
magnetizations are vectorally added together to obtain the total 
two-dimensional magnetization. This isotropic computation 
contains an orientation error as shown in Fig. 1. For isotropic 
material, the magnetization should follow the applied field 
after the magnetization begins to rotate. Applying the 
orientation correction [2] removes this error as shown in Fig 2. 
This paper extends the correction from the isotropic model to 
the anisotropic model. 

The two-dimensional vector magnetization of M P  tape is 
computed using a cobweb representation of a two-dimensional 
Gaussian Preisach function [12] and [6], where the first 
dimension is the X-Preisach plane and the second dimension is 
the Y-Preisach plane. Figure 5 shows a cobweb for the X- 
Preisach plane. Outside the outer ring of the cobweb, the 
Preisach function is considered to have a negligible value. 
This Preisach function is defined in each plane using seven 
Preisach parameters identified for the MP tape in each plane. 
The process of computing the magnetization for the 
anisotropic M P  tape consists of first computing the isotropic 
magnetization, applying an isotropic orientation correction to 
this magnetization, and then applying an anisotropic correction 
to obtain the anisotropic magnetization. 
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Fig. 5. Cobweb Reisach x-plane centered at the coercivity of a 
material, Hk. outer ring of cobweb is assumed to be at least 301 
and 3 s  from Hk. 

To compute the isotropic magnetization for the M P  tape, 
the Preisach parameters for the hard axis are set equal to the 
parameters identified for the easy axis. Using this isotropic 
model, the isotropic magnetization is computed. Application 
of the orientation correction removes the orientation error as 
shown in Fig. 2. 

The magnetization-applied field angle curves measured for 
anisotropic M P  tape are double periodic [ 111 An anisotropic 
correction factor must be applied to the model results to obtain 
the double-periodic oscillating characteristic of anisotropic 
media. Since this oscillating characteristic is sinusoidal in 
nature, a sinusoidal correction may be derived. Let 0, be. the 
angle of applied field after applying the orientation correction. 
Then 

x = sin(eh 1 (16) 

are the sinusoidal representations of the anisotropic applied 
field, X, and magnetization, Y, respectively. There may be a 
required linear shift associated with (16) and (17). Let 0, and 
8M be the anisotropic angles of applied field and 
magnetization, respectively. Then, 

and 
8 H  = x +- AOH, (18) 

8, =atan(%)+,,, 

where A& and A 8 M  are the required associated linear shifts, 
and 1 is the anisotropic correction factor. The variables, AOH 
and A&, respectively, determine the amount of horizontal shift 
of t?H and the amount of vertical shift of OM. The amplitude of 
the sinusoidal curve, Y, in (19) is adjusted by A and generates a 
double periodic curve between 0" and 360°, 
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Fig. 6. . MPT computed anisotropic magnetization-applied field angle 
curves computed from the corrected isotropic magnebtion-applied field 
angle curves. The dotted line is a reference line where the magnebtion 
angle equals the applied field angle. 

which matches the measured curve, except for applied fields 
between plus and minus the coercivity, Hc. Figures 6 and 7 
show the computed, using (18) and (19), and the measured 
anisotropic magnetization-applied field angle curves, 
respectively. 

The measured magnetization-applied field curves are 
computed from measured x- and y-component magnetization 
for the applied fields = 0.5, 0.25, and 1.0 T. The curves 
are double periodic. The angle of magnetization exceeds the 
angle of applied field before 180" and before 360" (W), which 
correspond to the negative and positive easy-axis directions of 
the MP tape. This result happens, because the angle of 
magnetization lies between the easy axis  and the angle of 
applied field. When the x-component of the applied field 
exceeds the coercivity, Hc, the magnetization tends toward the 
closest easy axis, resulting 
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Fig. 7. MPT measured anisotropic magnetization-applied field angle 
curves for three applied fields. The dotted line is a reference line where 
the magnetization angle equals the applied field angle. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE! TO EDIT) < 5 

in a possible angle of magnetization greater than the angle of 
applied field. As the applied field increases, the curves tend to 
straighten out and lie along the dashed 45" line, where the 
angles of magnetization and applied field are equal. 

Figure 8 shows the anisotropic correction, A, used in (1 9) to 
adjust the amplitude of the sinusoidal to fit the measured 
curves in Fig. 7. This curve is a smooth ascending curve to 
Hc. Above Hc, this curve is a smooth descending curve 
approaching the value of one asymptotically as the applied 
field increases. The flat appearance of this curve in the 
neighborhood of Hc is due to the discretation size of the 
applied field, = 0.05 T. 
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Fig. 8. Measured ellipticity factor for MP tape over the applied field 
m g e H =  0 T to 1.3 T. 

VI. ORIENTATION EXTENSION 

The SVPM and the RVPM each produce a magnetization 
angle-applied field angle curve with a four-fold periodicity as 
shown in Fig. 1. Since the angle of magnetization actually 
follows the angle of applied field uniformly, an orientation 
correction factor is applied by the model to ensure that this 
characteristic is correctly produced. The orientation correction 
factor removes the four-fold periodicity from 9" to 3W, but it 
also removes the two-fold anisotropic periodicity that is 
characteristic of anisotropic media shown in Fig. 7. 

As the applied field increases &om zero, the magnetization 
starts and remains at zero until the applied field begins to 
sweep through the media's hard-axis Preisach function. At 
this point, the magnetization begins to rotate and follow the 
applied field. As the applied field continues to rotate, the 
magnetization continues to rotate as more hysterons switch. 

Because the media are anisotropic, the hysterons along the 
easy axis of the media switch easier than the hysterons along 
the hard axis switch, thereby introducing a sinusoidal 
periodicity into the magnetization. The magnetization always 
lies between the applied field and the easy axis. Rotating the 
applied field from 0" to 36P, the magnetization follows the 
applied field until the easy-axis component of the 
magnetization switches from positive to negative. When the 
easy-axis component of the magnetization becomes negative, 

the magnetization lies between the applied field and the 
negative easy axis (180"); the magnetization now leads the 
applied field as shown in Fig. 7. The magnetization leads the 
applied field until the easy-axis component of the applied field 
becomes negative, and the magnetization returns to follow the 
applied field. 

To implement a two-dimensional rotational anisotropic 
model, one must consider how much of the hard axis Preisach 
function is swept by the applied field as shown in Fig. 9 for a 
positive applied field. In Fig. 9, the black area of the Preisach 
function is the area swept by the applied field. When the 
applied field is less than the Preisach function, none of the 
Preisach function is swept, and the Preisach function in Fig. 9 
is all white. When the applied field is greater than the 
Preisach function, the entire Preisach function in Fig. 9 is 
black. The areas of the Preisach function that are black 
correspond to magnetic particle whose magnetization rotates, 
whereas, the white areas correspond to magnetization that 

1 t  A '  i 

Fig. 9. Preisach function along hard axis of MP tape with applied field, 
@ = 0.15 T. Magnetization rotates in black area; magnetization 
oscillates in white area as the applied field rotates. 

oscillates. Because the hard axis applied field varies from 
positive to negative during rotation of 3W, there is a similar 
sweeping of the hard axis Preisach function for negative 
applied fields. 

The computation of anisotropic magnetization follows the 
process depicted by the flow diagram shown in Fig. 10. When 
the applied field does not sweep the Preisach function, PR = 0, 
there is no rotation of the magnetization, and the magnetization 
is computed by the RVPM without an ellipticity correction. 
When the applied field completely sweeps the Preisach 
function, P R  = 1, there is complete rotation of the 
magnetization, and an ellipticity correction is applied to the 
entire RVPM computed magnetization. When the Preisach 
hnction is partially swept by the applied field, o< PR <1, a 
portion of the magnetization is rotating, CR, and a portion of 
the magnetization is oscillating, CO. The 
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HR = Applied Field 
Py = Hard Axis Preisach Function 
Area 
PR = Area of P y  Swept by HR 
1 = Ellipticity Correction Factor 
& = OscilJathg Magnetization 

compntc P y  

I 

Fig. 10. Flow chart to compute rotating and oscillating magnetization. 

oscillating magnetization is computed by multiplying the 
R W M  magnetization by the coefficient, G. The rotating 
magnetization is computed by multiplying the RVPM 
magnetization by the ellipticity correction factor and then by 
the coefficient, CR. The total magnetization is then determined 
by vectorally adding the oscillation magnetization and the 
rotational magnetization as shown in Fig. 1 1 .  

Vn. ELLIPT~CTI~IFACTOR 

The ellipticity factor is the ratio of the change in 
magnetization along the easy axis to the change in 
magnetization along the hard axis. Let HR be the magnitude of 
the rotating field. Let Mi, be the component 

Maud 

t 

Fig. 11. Vector sum of magnetization contributed by oscillating 
magnetization (MW) and magnetization contributed by rotating 
magnetization (Mm). 

of the easy-axis (x-axis) irreversible magnetization and M, be 
the component of the hard-axis @-axis) irreversible 
magnetization during rotation of the applied field Then 

and 

where Ms is the saturation magnetization, S, and S, are the 
easy and hard axis squareness respectively, Hk and Hm are 
the easy and hard axis average critical fields respectively, and 
ox and cy are the easy and hard axis standard deviation of the 
interaction and critical fields respectively. Define the 
reversible magnetization function, 

The coefficients, u, and a. in (22) are derived for the easy and 
hard axes using the irreversible magnetization of (20) and (21), 

G = a + f ( H R ) - a - f ( - H R )  (22) 

1 - M ,  
(23) 

l + M i ,  
a x +  =- and ax- =- 

2 2 
and 

l+Mi, ,  l -Mi, ,  
2 2 

ay+ =- and ay- =- (24) 

The reversible function, f in (22). may. be any convenient 
function that goes through zero when the applied field equals 
zero and is finite for large values of applied field. Consider 
the function 

(25) 
and 

(26) 
where 5 is a model parameter that needs to be identified. The 
reversible magnetization is 

where 1~~ is a unit vector in the direction of HR. For the easy 
and hard axes (x and y respectively), 

f ( ~ ) =  l-exp(-w) for H > o 

f ( ~ ) =  H for H I 0. 

M R  = G ( l - s ) R ~ M s l , ~ ,  (27) 

and 

Adding (20) and (23) 

M, =MSS,erf + G , ( l - S x ) M S .  (30) 

Adding (21) and (24) 

Then, the ellipticity correction factor, L, equals (30) divided 
by (31) 



> REPLACE THIS LINE WITH YOUR PAPFXDENTIfTZATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7 

The rotational magnetization is computed from 

M , ~  =Jnrf + M ;  (33) 
and when added to M,,, computes the resultant magnetization, 
M. Multiplying (30) by C, and (31) by C, enables the 
computation of OH and OM, the angle of applied field and the 
angle of magnetization respectively for the rotation of the 
applied field. Figure 12 shows the rotation coefficient, C, , for 
positive applied fields. 

material is different for each different applied field. The 
magnetization trajectories in Fig. 13 are for applied fields with 
a fixed magnitude and for rotations from 0" to 360". The 
difference between the starting and ending magnetization 
magnitude is a measure of the accommodation. The difference 
between the starting and ending magnetization angle is a 
measure of the lag. As the applied field increases, the shape of 
the trajectories changes exponentially from ellipses to circles 
as shown in Fig. 13. 

The details of the lag angle and the accommodation are 
shown in Fig. 14 for a measured magnetization MPT trajectory 
for a clockwise rotating applied field of 0.2 T. A 

Fig. 13. Change in magnetization for applied fields of pJf= 0.2 T, 
0.3 T, and 1.0 T 

Applied Field bH, T 

.12 Computed rotation coefficient, G I  for positive applied fields. 

WI. ROTATIONAL ACCOMMODATION 

Accommodation, based upon the magnetic interaction 
between hysterons, causes the drifting of minor loops with the 
reversal of applied fields. This drifting has an important 
impact, because it affects the repeatability of the recording 
process and causes pexformance changes during the operation 
of motors and transformers. To understand accommodation, 
one must understand to where the magnetization is drifting. A 
magnetic calculation in a complex process will give a wrong 
answer with the classic Preisach model that does not have 
accommodation. Accommodation, which is rate independent, 
appears to be similar to aftereffect, which is rate dependent. 
Accommodation and aftereffect are caused by different 
processes. 

Vector measurements made on M P  tape have displayed 
vector accommodation [ 111. For these measurements, several 
different applied fields were rotated 360" after initialization of 
a negative saturation field. The x- and y- components of the 
magnetization were measured. The vector sum of these 
measurements, which we call magnetization trajectories, 
generate elliptic loci [ l l l .  A magnetization trajectory of a 
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more precise measure of accommodation is computing the 
difference between starting and ending of the trajectory 
magnitude after the ending magnetization is extrapolated to the 
same angle that the magnetization started (0” and 360”). 

&cornnodstion 
d 

Fig. 14. Measured MPT magnetization hajectory for a 
clockwise rotating applied field of 0.2 T showing a measure of 
magnetization accommodation and lag. 

m 

Fig. 15. Measured and Computed Ellipsoidal Tmjectov at  OH = 0.2 T 

Figure 15 shows the measured MPT magnetization 
trajectory and a computed ellipse with and exponential decay 
for a rotating applied field of 0.2 T. The computed trajectory 
shows that the measured trajectory is ellipsoidal and that the 
accommodation is an exponential decay of this trajectory. The 
decay tends towards zero as the applied field increases to large 
values as shown in Fig. 13. 

M. CONCLUSIONS 

compute the magnetization. The simulation results show that 
the presented model represents isotropic media accurately. 
Further refinement of this vector model in terms of speed and 
accuracy is a topic of further research. 

The orientation correction for isotropic material was 
extended for anisotropic material. This extension consists of 
identifying rotational and oscillatory magnetization by 
determining the percentage of the hard axis Preisach function 
swept by the applied field. The extension corrects the 
magnetization to produce the anisotropic double fold 
periodicity. The amplitude of the double fold periodic 
magnetization tends towards zero as the applied field 
increases. 

Vector measurements made on magnetic particle tape, and 
anisotropic medium, display vector accommodation, which is 
especially evident in polar format. For small applied fields, 
the magnetization trajectories form ellipses that exponentially 
form circles as the applied field increases to large values. A 
measure of the accommodation is the difference between the 
start and the end of a magnetization trajectory. The 
accommodation may be represented as an exponential decay of 
an ellipsoidal magnetization trajectory. Incorporation of 
vector accommodation into a Preisach vector model is the 
subject of future research. 
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TABLE I. SVPM STATE FUNCI1ON VALUES IN TWO DIMENSIONS, a 

Number of 
violations 

0 

1 

no change I 1 1 

Violations 

v j  I h j  l u .  

holds fori = x, y and z 

hi >ujor hi < v j  

J 

TABLE ll. RVPM *ATE FUNCTION VALUES IN TWO DIMENSIONS, Q 

0 

No change 

0 
hx -ux I 

TABU III. Fmcno~ VALUES IN RolEE DIMENSIONS, Qj 

2 

Any two combinations of 
violations in u or v where 

the thresholds violated 
are Cded f j a d  f k  . 

3 

Any three combinations 
of violations in u or v 
where the thresholds 
violated are called 

1 

States 

no change 

Q j  =lor  Q j  =-1  and Qi =O , i # j  

hj  - t i  hk - t k  Q. J = - Qk = 
,/(hi - t j  y + (h, - tk y J(hj - t j y  +(hk -tk)Z 

and Qi = O  , i # j , k  

hk - t k  
Qk = 

, /(hi - t i  >’ + (hj - t j  )” i- (hk - t ,  >’ 


